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Consider oligopoly firms’ dynamic pricing strategies in a gasoline market under a law that
constrains firms to set price simultaneously and only once per day (Wang, 2009). Consider
firms interested in monitoring whether or not their employees are working, and the typical em-
ployee decision whether to work or shirk at a given time. Consider the tax authority’s decision 

whether or not to audit a tax payer, and the tax pay-
er’s decision whether or not to cheat on his taxes.
Consider a professional cyclist in the Tour de France
deciding whether to dope or not. Consider the prob-
lem of parking legally or illegally in cities, and the po-
lice deciding whether to monitor or not a given street
at a point in time. Consider a penalty kick in football,
where both kicker and goalkeeper are deciding simul-
taneously which side to take. These are all competi-
tive situations that involve «mixed strategies», that is
situations in which optimal behaviour involves mixing
among the various alternatives available to agents
(firms, employees, drivers, police, tax authorities).  

This paper reviews the economic literature dealing
with the experimental testing of situations where two
agents compete strategically in a strict sense of the
word, that is in a zero-sum fashion in which the gain
to one is exactly identical to the loss of the other. These
situations are important for economics and the social
sciences because they are at the intersection of two
of the most fundamental concepts in Economics:
«competition» and «strategic behaviour» in the sense
of interactive decision-making. The Merriam-Webster
dictionary defines the first concept as follows:

Compete, competition: to strive consciously or un-
consciously for an objective (as position, profit, or
a prize); to be in a state of rivalry «competing
teams, companies competing for customers».

And Rubinstein (1991), defines the concept of «equi-
librium strategy» as follows:

Equilibrium Strategy. It describes an agent plan of ac-
tion when dealing with situations of conflict as well as
those considerations which support the optimality of
his plan.

HISTORY AND RELEVANCE IN ECONOMICS

Kreps (1991) correctly notes that «the point of game
theory is to help economists understand and predict
what will happen in economic, social and political
contexts». So if Von Neumann considered, as the ini-
tial quotation suggests, that there could be no theo-
ry of games without proving the Minimax theorem,
then it seems appropriate to think that he would have
considered that there could be no empirical appli-
cability of the theory of games without first having ver-
ified empirically that theorem. As will be noted below,
the Minimax theorem was not empirically verified un-
til 2003, that is 75 years after first formally demonstrat-
ed in 1928.

The empirical verification of strategic models of behav-
ior is often difficult and problematic. In fact, testing the
implications of any game theoretical model in a real-
life setting has proven extremely difficult in the econom-
ics literature for a number of reasons. The primary rea-
son is that many predictions often hinge on properties
of the utility functions and the values of the rewards used.
Further, even when predictions are invariant over class-
es of preferences, data on rewards are seldom avail-
able in natural settings. Moreover, there is often great
difficulty in determining the actual strategies available
to the individuals or firms involved, as well as in meas-

«I thought there was nothing worth publishing until the 
Minimax Theorem was proved. As far as I can see, 

there could be no theory of games without that theorem.»
JOHN VON NEUMANN, 1953

«Strictly competitive strategic situations are a vital corner-
stone of game theory.»

ROBERT J. AUMANN, 1987
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uring choices, effort levels, and the incentive structures
they face. As a result, even the most fundamental pre-
dictions of game-theoretical models have rarely been
supported empirically in real situations.

Von Neumann published the Minimax theorem in his
1928 article «Zur Theorie der Gesellschaftsspiele». The
theorem essentially says:

For every two-agent, zero-sum game with finitely
many strategies, there exists a value V and a mixed
strategy for each agent or player, such that:

(a) Given player 2’s strategy, the best payoff possible
for player 1 is V, and

(b) Given player 1’s strategy, the best payoff possible
for player 2 is −V.

Equivalently, Player 1’s strategy guarantees himself a
payoff of V regardless of Player 2’s strategy, and sim-
ilarly Player 2 can guarantee himself a payoff of −V.

A mixed strategy is a strategy consisting of possible
moves and a probability distribution (collection of
weights) that corresponds to how frequently each
move or potential alternative is to be played. Interestingly,
there are a number of interpretations of mixed strat-
egy equilibrium, and economists often disagree as to
which one is the most appropriate. See for example
the interesting discussion in the classic graduate text-
book by Martin Osborne and Ariel Rubinstein, A Course
on Game Theory (1994, Section 3.2).

A game is called zero-sum or, more generally, con-
stant-sum, if the two players’ payoffs always sum to a
constant, the idea being that the payoff of one play-
er is always exactly the same as the negative of that
of the other player. The name Minimax arises because
each player minimizes the maximum payoff possible
for the other. Since the game is zero-sum, he also min-
imizes his own maximum loss (i.e., maximizes his min-
imum payoff). 

Most games or strategic situations in reality involve a
mixture of conflict and common interest. Sometimes,
everyone wins, such as when players engage in vol-
untary trade for mutual benefit. In other situations,
everyone can lose, as the well-known Prisoner’s dilem-
ma situations illustrate. Thus, the case of pure conflict
(or zero-sum or constant-sum or strictly competitive)
games represents the extreme case of conflict situa-
tions that involve no common interest. As such, and
as Aumann (1987) puts it in the initial quote, zero-sum
games are a key cornerstone of game theory. It is not
a surprise that they were the first to be studied theo-
retically.

The Minimax theorem can be regarded as a special
case of the more general theory of Nash (1950, 1951).
It applies only to two-person zero-sum or constant-sum
games, while the Nash equilibrium concept can be
used with any number of players and any mixture of
conflict and common interest in the game.

A final characteristic of the mixed strategy equilibrium
in zero‐sum games is that it is relatively intuitive since
players in such games have the incentive to deliber-
ately randomize to remain unpredictable. However,
the use of mixed strategies in nonzero‐sum games is
rather counterintuitive since players in such games of-
ten have the incentive to avoid randomization
(Schelling 1960).

Rubinstein (1991) notes that there is an «enormous eco-
nomic literature that utilizes mixed strategy equilibri-
um».

FIRST EMPIRICAL VERIFICATION OF THE MINIMAX
THEOREM

In what follows I will consider a simple penalty kick sit-
uation in football both for the sake of expositional clar-
ity, and because, as will be seen, this setting turned
out to the one in which the first complete empirical
verification of the Minimax theorem in real life was ob-
tained.

A formal model of the penalty kick may be written as
follows. Let the player’s payoffs be the probabilities of
success (‘score’ for the kicker and «no score» for the
goalkeeper) in the penalty kick. The kicker wishes to
maximize the expected probability of scoring, while
the goalkeeper wishes to minimize it. Take, for exam-
ple, a simple 2 × 2 game-theoretical model of play-
er’s actions for the penalty kick and let πij denote the
kicker’s probabilities of scoring, where i = {L,R} de-
notes the kicker’s choice and j = {L,R} the goalkeep-
er’s choice, with L = left, R = right:
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i\j L R

L πLL, 1- πLL πLR,1- πLR

R πRL,1- πRL πRR,1- πRR

TABLE 1

Each penalty kick involves two players: a kicker and a
goalkeeper. In the typical kick in professional leagues
the ball takes about 0.3 seconds to travel the distance
between the penalty mark and the goal line. This is
less time than it takes for the goalkeeper to react and
move to the possible paths of the ball. Hence, both
kicker and goalkeeper must move simultaneously.
Players have few strategies available and their actions
are observable. There are no second penalties in the
event that a goal is not scored. The initial location of
both the ball and the goalkeeper is always the same:
the ball is placed on the penalty mark and the goal-
keeper positions himself on the goal line, equidistant
from the goalposts. The outcome is decided, in ef-
fect, immediately (roughly within 0.3 seconds) after
players choose their strategies.

The clarity of the rules and the detailed structure of
this simultaneous one-shot play capture the theoreti-
cal setting of a zero-sum game extremely well. In this
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sense, and as will be discussed below, it presents no-
table advantages over other plays in professional
sports and other real-world settings. 

The penalty kick game has a unique Nash equilibrium
in mixed strategies when:

πLR > πLL < πRL,

πRL > πRR < πLR

Testable Implications. If the play in a penalty kick can
be represented by this model, then equilibrium play
requires each player to use a mixed strategy. In this
case, the equilibrium yields two sharp testable predic-
tions about the behavior of kickers and goalkeepers:

1. Success probabilities–the probability that a goal
will be scored (not scored) for the kicker (goalkeep-
er)–should be the same across strategies for each
player.

Formally, let gL denote the goalkeeper’s probability of
choosing left. This probability should be chosen so as to
make the kicker’s probability of success identical across
strategies. That is, gL should satisfy pkL = pkR , where:

pkL = gL · πLL + (1 − gL) · πLR

pkR = gL · πRL + (1 − gL) · πRR

Similarly, the kicker’s probability of choosing left kL
should be chosen so as to make the goalkeeper’s
success probabilities identical across strategies, pgL
= pgR , where:

pgL = kL · (1 − πLL ) + (1 − kL) · (1 - πRL )

pgR = kL · (1 − πLR ) + (1 − kL) · (1 − πRR)

2. Each player’s choices must be serially independ-
ent given constant payoffs across games (penalty
kicks). That is, individuals must be concerned only with
instantaneous payoffs and intertemporal links be-
tween penalty kicks must be absent. Hence, players’
choices must be independent draws from a random
process. Therefore, they should not depend on one’s
own previous play, on the opponent’s previous play,
on their interaction, or on any other previous actions.

The intuition for these two testable hypotheses is the
following. In a game of pure conflict (zero-sum), if it
would be disadvantageous for you to let your oppo-
nent see your actual choice in advance, then you
benefit by choosing at random from your available
pure strategies. The proportions in your mix should be
such that the opponent cannot exploit your choice
by pursuing any particular pure strategy out of those
available to him—that is, each player should get the
same average payoff when he plays any of his pure
strategies against his opponent’s mixture.

Note that theories that make precise point predictions
are easy to reject. In our case, agents have to choose
the exact frequencies of actions, to exactly equate
payoffs across strategies, and they have to do that in

an exactly random way. Even minimal deviation from
the frequencies and payoffs, or from randomization
are sufficient for rejecting the theory. So this reject/no
reject dichotomy is quite rigid. O’Neill (1991) suggests
for these cases an alternative that is much less rigid
than the reject/no reject dichotomy: a Bayesian ap-
proach to hypothesis testing combined with a meas-
ure of closeness of the results to the predictions.

Advantages over other Empirical Settings. Although
sports settings have many advantages, it is often im-
possible to find settings with the same ideal charac-
teristics of a penalty kick. In fact even seemingly sim-
ilar situations often deviate substantially from the the-
oretical postulates because either they are not always
the same game when repeated and/or they are not
even a simultaneous zero-sum game:

– Not always the same game. Take serving in tennis or
pitching in baseball. Not only the direction of the serve
or the pitch, but its spin are also important choice vari-
ables that cannot be dismissed. More importantly, the
position of the player returning a tennis serve or attempt-
ing to hit a baseball ball affects the choice of strategy
by the server or the pitcher. Thus, unlike what happens
in a penalty kick or in a lab experiment, the initial loca-
tion of the two players makes the basic situation vary
from game to game. As a result games are different
and cannot be aggregated to compute average fre-
quencies or study randomness. 

– Not a simultaneous zero-sum game. Perhaps the
most critical shortcoming is that a serve or a pitch is
not a simultaneous (static) but a sequential (dynam-
ic) game, in that the outcome of the play is typically
not decided immediately. After a tennis player serves
or a pitcher throws, there is subsequent strategic play
that often plays a crucial role in determining the final
outcome. Each point in these situations is more like
part of a dynamic game with learning, where each
player plays a multi-armed bandit at the start of the
match. In a dynamic game, there probably are
spillovers from point to point whereas in a standard re-
peated zero-sum game, especially if repeated infre-
quently, there are no such payoff spillovers. For in-
stance, in tennis having served to the left on the first
serve (and say faulted) may effectively be «practice»
in a way that makes the server momentarily better
than the average at serving to the left again. If this ef-
fect is important, the probability that the next serve
should be down the line should increase. In other
words, there should be negative serial correlation in
the choice of serve strategies rather than the lack of
serial correlation predicted by Minimax.

Consistent with these shortcomings, the results in
Walker and Wooders (2001) confirm that tennis play-
ers switch serving strategies too often to be consistent
with random play, and hence with Minimax. This is al-
so confirmed in Schweizer (2016) and Spiliopou-
los (2016) who show that tennis players do not even
equate payoffs across strategies.
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Implication #1: Tests of Equal Scoring Probabilities

The tests of the null hypothesis that the scoring prob-
abilities for a player (kicker or goalkeeper) are identi-
cal across strategies can be implemented with the
standard proportions tests, that is, using Pearson’s X2

goodness-of-fit test of equality of two distributions.

Let pij denote the probability that player i will be suc-
cessful when choosing strategy j ∈ {L,R}, nij the num-
ber of times that i chooses j, and NijS and NijF the num-
ber of times in which player i chooses strategy j and
is successful (S) or fails (F) in the penalty kick. Success
for a kicker is to score a goal, and for a goalkeeper is
that a goal is not scored. Hence, we want to test the
null hypothesis piL = piR = pi. Statisticians tell us that to
do this, the Pearson statistic for player i

is distributed asymptotically as a X2 with 1 degree of
freedom. 

It is also possible to study whether behavior at the ag-
gregate level is consistent with equilibrium play by test-
ing the joint hypothesis that each individual case is si-
multaneously generated by equilibrium play. The test
statistic for the Pearson joint test in this case is the sum
of all the N individual test statistics, and under the null
hypothesis this test is distributed as a X2 with N degrees
of freedom. Note that this joint test allows for differ-
ences in probabilities Pi across players.

Implication #2: Tests of Randomness or Serial Inde-
pendence

The second testable implication is that a player’s
mixed strategy is the same at each penalty kick. This
implies that players’ strategies are random or serially
independent. Their play will not be serially independ-
ent if, for instance, they choose not to switch their ac-
tions often enough or if they switch actions too often
or if they follow any other non-random pattern.  

The work on randomization is extensive in the experi-
mental economics and psychological literatures.
Interestingly, this hypothesis has never found support
in any empirical (natural and experimental) tests of
the Minimax hypothesis, and is rarely supported in oth-
er tests. In particular, when subjects are asked to gen-
erate random sequences their sequences typically
have negative autocorrelation, that is individuals typ-
ically exhibit a bias against repeating the same
choice (3). This phenomenon is often referred to as
the “Law of Small Numbers” (as subjects may try to re-
produce in small sequences the properties of large
sequences). The only possible exception is Neuringer
(1986) who explicitly taught subjects to choose ran-
domly after hours of training by providing them with
detailed feedback from previous blocks of responses
in the experiment. These training data are interesting
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TESTING

A penalty kick that is described by the simple 2×2
model (2) has a unique Nash equilibrium and the
equilibrium requires each player to use a mixed strat-
egy. As just noted above, equilibrium theory makes
two testable predictions about the behavior of kickers
and goalkeepers: (1) Winning probabilities should be
the same across strategies for both players, and (2)
Each player’s strategic choices must be serially inde-
pendent.

Using data collected on 9,017 penalty kicks during the
period September 1995-June 2012 from professional
games in Spain, Italy, England, and other countries,
the empirical scoring and no-scoring probabilities in
percentage terms are:

i\jC gL 1 − gL

kL 59.11,  40.89 94.10,  5.90
1 − kL 93.10,  6.90 71.22,  28.78

If we compute the mixed strategy Nash equilibrium in
this game (Minimax frequencies), and we look at the
actual mixing probabilities observed in the sample,
we find that observed aggregate behavior is virtually
identical to the theoretical predictions:

gL 1 − gL kL 1 − kL

Nash Predicted Frequencies: 40.23% 59.77% 38.47% 61.53%

Actual Frequencies: 41.17% 58.83% 38.97% 61.03%

This result is, at the very least, encouraging for the
model. We turn next to testing the two implications of
the Minimax Theorem.
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in that they suggest that experienced subjects might
be able to learn to generate randomness. As
Camerer (1995) remarks, «whether they do in other
settings, under natural conditions, is an empirical
question.» 

A simple way to test for randomness is to use the stan-
dard «runs test». Consider the sequence of strategies
chosen by a player in the order in which they occurred
s = s1, s2, s3…, sn, where , SX ∈{L, R}, and n = nL + nr are
the number of natural side and non-natural side
choices made by the player. Let f (r; s) denote the to-
tal number of runs in the sequence s. A run is defined
as a succession of one or more identical symbols that
are followed and preceded by a different symbol or
no symbol at all. Let f(r; s) denote the probability that
there are exactly r runs in the sequence s. Let θ [r; s] =
Σk=1,...,r f(r; s) denote the probability of obtaining r or
fewer runs. Gibbons and Chakraborti (1992) show that
by using the exact mean and variance of the num-
ber of runs in an ordered sequence then, under the
null hypothesis that strategies are serially independ-
ent, the critical values for the rejection of the hypoth-
esis can be found from the Normal approximation to
the null distribution. 

More precisely, the variable

is distributed as a standardized Normal probability dis-
tribution N(0,1). The null hypothesis will then be reject-
ed at the five-percent confidence level if the probabil-
ity of r or fewer runs is less than .025 or if the proba-
bility of r or more runs is less than .025, that is if θ [r; s]
< 0.025 or if 1 − θ [r-1; s] < 0.025. Similarly, at the ten-
percent level, the hypothesis is rejected if they are less
than 0.05 (4). 

The results in Table 1 (in the next page) show the re-
sults of the Pearson test and the Runs test for 40 world-
class soccer players, half kickers and half goalkeep-
ers.

The null hypothesis of equality of payoffs cannot be
rejected for the majority of players. It is rejected for
just two players (David Villa and Frank Lampard) at the
five-percent significance level and four players at the
ten-percent significance level (in addition to Villa and
Lampard, Iker Casillas and Morgan De Sanctis). Note
that we should expect some rejections, just as if we
flip 40 coins 10 times each we should expect some
coins, but not many, to yield by pure chance propor-
tions that are far from 50-50 such as 9 heads and 1
tail, or 8 heads and 2 tails. The confidence levels we
are willing to adopt (typically no greater than five or
ten percent) tell us how many rejections we should ex-
pect. In our case, with 40 players the expected num-

ber of rejections at the five-percent level is 0.05 x 40
= 2 and at the ten-percent level it is 0.10 x 40 = 4. 

Thus, the evidence indicates that the hypothesis that
scoring probabilities are identical across strategies
cannot be rejected at the individual level for most
players at conventional significance levels. The num-
ber of rejections is, in fact, identical to the theoretical
predictions. 

Behavior at the aggregate level also appears to be very
consistent with equilibrium play. The joint hypothesis that
each case is simultaneously generated by equilibrium
play can be tested computing the aggregate Pearson
statistic (summing up the individual Pearson statistics)
and checking if it is distributed as a X2 with N degrees
of freedom. The results show that the Pearson statistic is
36.535 and its associated p-value is 0.627 for all 40 play-
ers. Hence, the hypothesis of equality of winning prob-
abilities cannot be rejected at the aggregate level.
Focusing only on kickers, the relevant statistic is 20.96
with a p-value of .399, and for goalkeepers it is 15.58
with a p-value of 0.742. Hence, the hypothesis of equal-
ity of winning probabilities cannot be rejected for either
subgroup.

With respect to the null hypothesis of randomness, the
runs tests show that this hypothesis cannot be rejected
for the majority of players. They neither appear to switch
strategies too often or too infrequently, but just about the
right amount. This hypothesis is in fact rejected for just
three players (David Villa, Alvaro Negredo and Edwin Van
der Sar) and four players (in addition, Jens Lehman) at
the five-percent and ten-percent significance levels. For
the same reasons as in the previous test, we should be
expecting two and four rejections.

Problems with the Runs Test. The runs test is simple and
intuitive. However, it is a test that has low power to iden-
tify a lack of randomness. Put differently, current choic-
es may be explained, at least in part, by past variables
such as past choices or past outcomes, or past choic-
es of the opponent, or interactions among these vari-
ables, and still the number of runs in the series of choic-
es may appear to be neither too high or too low. In oth-
er words, many potential sources of dynamic depend-
ence cannot be detected with a runs test. For this rea-
son, some researchers on randomization have studied
whether that past choices or outcomes have any role
in determining current choices by estimating a logit
equation for each player. For instance, in Brown and
Rosenthal (1990) the dependent variable is a dichoto-
mous indicator of the current choice of strategy, and
the independent variables are first and second lagged
indicators for both players’ past choices, first and sec-
ond lags for the product of their choices, and an indi-
cator for the opponent’s current choices. The results
show that in fact it is possible to detect a number of dy-
namic dependences with this logit equation that are
not possible to detect with the runs test (5).

Problems with Standard Logit Equation. Unfortuna-
tely, the standard logit equation is highly problematic in
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Proportions Success Rate Pearson Test Runs Test

Name #Obs L R L R Statistic p-value r –   r[r-1,s]   –   r[r,s]

Kickers:

Alessandro Del Piero 55 0.345 0.654 0.736 0.805 0.344 0.557 24 0.237 0.339

Zinedine Zidane 61 0.377 0.622 0.782 0.815 0.099 0.752 26 0.126 0.192

Lionel Messi 45 0.377 0.622 1.000 0.928 1.270 0.259 22 0.416 0.544

Christiano Ronaldo 51 0.372 0.627 0.842 0.718 1.008 0.315 24 0.342 0.458

Mikel Arteta 53 0.433 a0.566 0.782 0.833 0.218 0.639 27 0.439 0.551

Xabi Prieto 37 0.324 0.675 0.833 0.880 0.151 0.697 16 0.256 0.392

Thierry Henry 44 0.477 0.522 0.809 0.782 0.048 0.825 19 0.086 0.145

Francesco Totti 47 0.489 0.510 0.782 0.833 0.195 0.658 20 0.070 0.119

Andrea Pirlo 39 0.384 0.615 0.733 0.833 0.566 0.451 20 0.505 0.639

Steven Gerrard 50 0.340 0.660 0.823 0.909 0.777 0.377 23 0.382 0.507

Samuel E’too 62 0.419 0.580 0.769 0.805 0.120 0.728 28 0.165 0.239

Diego Forlán 62 0.419 0.580 0.769 0.805 0.120 0.728 30 0.327 0.427

Roberto Soldado 40 0.400 0.600 0.937 0.750 2.337 0.126 21 0.539 0.667

Franc Ribéry 38 0.500 0.500 0.789 0.736 0.145 0.702 25 0.930 0.964

David Villa 52 0.365 0.634 0.631 0.909 5.978 0.014** 18 0.010 0.022**

Alvaro Negredo 45 0.288 0.711 0.769 0.906 1.501 0.220 26 0.986** 0.995

Ronaldinho 46 0.456 0.543 0.952 0.880 0.753 0.385 24 0.460 0.580

Martin Palermo 55 0.381 0.618 0.714 0.735 0.028 0.865 23 0.098 0.158

Frank Lampard 38 0.236 0.763 0.666 0.793 4.113 0.042** 17 0.791 0.898

Robbie Keane 42 0.309 0.690 0.769 0.758 1.174 0.278 17 0.184 0.296

All 962 0.386 0.613 0.795 0.822 20.96 0.3997

Goalkeepers:

Peter Cech 82 0.414 0.585 0.235 0.187 0.276 0.590 38 0.224 0.298

Víctor Valdes 71 0.394 0.605 0.214 0.232 0.032 0.857 32 0.196 0.272

Bodo Illgner 68 0.352 0.647 0.250 0.272 0.041 0.839 33 0.547 0.650

David James 69 0.391 0.608 0.185 0.238 0.270 0.603 40 0.924 0.954

Jens Lehman 72 0.444 0.555 0.218 0.225 0.004 0.949 28 0.014 0.026*

Edwin Van der Sar 80 0.412 0.587 0.121 0.148 0.125 0.722 26 0.000 0.001**

Mark Schwarzer 55 0.381 0.618 0.238 0.264 0.048 0.825 31 0.846 0.904

Oliver Kahn 58 0.379 0.620 0.227 0.138 0.747 0.387 33 0.881 0.928

Willie Caballero 60 0.350 0.650 0.095 0.230 1.674 0.195 29 0.522 0.634

Andreas Kopke 70 0.428 0.571 0.233 0.150 0.787 0.374 31 0.119 0.175

Tim Howard 67 0.402 0.597 0.222 0.225 0.000 0.978 30 0.169 0.241

Morgan De Sanctis 62 0.435 0.564 0.148 0.342 3.018 0.082* 34 0.700 0.783

Gorka Iraizoz 73 0.424 0.575 0.129 0.142 0.028 0.865 32 0.106 0.157

Gianluigi Buffon 71 0.408 0.591 0.241 0.142 1.113 0.291 35 0.420 0.518

Iker Casillas 69 0.347 0.652 0.250 0.088 3.278 0.070* 32 0.414 0.520

Julio Cesar 68 0.308 0.691 0.238 0.106 2.007 0.156 34 0.840 0.900

Andrés Palop 66 0.439 0.560 0.206 0.297 0.694 0.404 34 0.498 0.597

Pepe Reina 55 0.418 0.581 0.173 0.187 0.016 0.897 31 0.778 0.852

Stefano Sorrentino 48 0.458 0.541 0.136 0.269 1.275 0.258 27 0.687 0.783

Dani Aranzubia 68 0.455 0.544 0.225 0.189 0.138 0.709 29 0.062 0.098

All 1332 0.402 0.597 0.199 0.198 15.580 0.742

Notes: ** and * denote rejections at the 5 and 10 percent levels. 

TABLE 1
PEARSON AND RUNS TESTS 

that it generates biased estimates. Unawareness of this
aspect is a common mistake in the literature (see Walker
and Wooders (2001), Wooders (2010), Van Essen and
Wooders (2015). The basic issue is that the choice of
strategy in a penalty kick may depend on certain ob-
served characteristics of the player and his opponent,
the specific sequence of past choices and past out-
comes, and perhaps other variables. It may also de-
pend on unobserved characteristics. Thus, the basic
econometric problem is to estimate a binary choice

model with lagged endogenous variables and unob-
served heterogeneity where the effect of state de-
pendence needs to be controlled for appropriately.
The econometric estimation of these models is sub-
ject to a number of technical difficulties as parame-
ter estimates jointly estimated with individual fixed ef-
fects can be seriously biased and inconsistent.
Arellano and Honoré (2001) offer an excellent review
of the issues that are encountered and how they can
be resolved.

SOURCE: Palacios-Huerta (2014).
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To establish that past choices have no significant role
in determining current choices, it is possible to esti-
mate a logit equation for each player using the
Arellano and Carrasco (2003) method. The model
generates unbiased and consistent estimates, allows
for unobserved heterogeneity and for individual ef-
fects to be correlated with the explanatory variables. 

Using this method it can be shown that the null hypoth-
esis of randomization that all the explanatory variables
are jointly statistically insignificant cannot be rejected for
any player at the five-percent level, and is rejected for
only three players (David Villa, Frank Lampard, and Iker
Casillas) at the ten-percent level.

The main finding in this section is that the results of the
tests are remarkably consistent with equilibrium play in
every respect: (i) Winning probabilities are statistically iden-
tical across strategies for players; (ii) Players generate se-
rially independent sequences and ignore possible strate-
gic links between subsequent penalty kicks. These results,
which extend Palacios-Huerta (2003), represent the first
time that both implications of von Neumann’s (1928)
Minimax Theorem are supported in real life.

LAB AND FIELD EXPERIMENTAL
TESTING

General Considerations. Although Vernon Smith re-
ceived the 2002 Nobel Prize in Economic Sciences
«for having established laboratory experiments as a
tool in empirical economic analysis», this tool has be-
come under severe attack in recent years. A main cri-
tique is that the data generated in laboratory exper-
iments are not «realistic», and hence to obtain more
realistic data we should pursue experiments not in the
lab but in the field. 

Falk and Heckman (2009) explain in some detail why
this critique is not only misguided but plain wrong.
Consider an outcome of interest Y and a list of deter-
minants X1, …, XN. Suppose that:

Y = f(X1,X2 ,…, XN)

Now we are interested in knowing the causal effect of
X1 on Y, that is the effect of varying X1 holding fixed
X*= (X2, …, XN). Thus, unless f is separable in X1, so that
Y = θ (X1) + g(X*), the level of Y response to X1 will de-
pend on the level of X*.

Further, even in this separable case, unless θ (X1) is a
linear function of X1, the causal effect of X1 will de-
pend on the level of X1 and the size of the variation
of X1. These are problems that appear both in field
and lab experiments, and in any estimation of the
causal effect of X1.

X* may be demographic characteristics, individual
preference parameters, social influences, or any set
of aspects of the environment. Let X* denote all these
characteristics in a lab setting (say with student sub-

jects), and X** denote these characteristics in a nat-
ural setting (say, with sportscards traders as subjects).
If one is interested in the causal effect of X1 on Y, which
one is more informative: holding fixed X* or holding
fixed X**?

Well, experiments are able to obtain universally de-
fined causal effects of X1 on Y:

– only under assumption Y = θ (X1) + g (X*), 

and 

– only if the response of Y to X1 is linear. 

But if this is the case, then lab experiments and field
experiments are equally able to obtain accurate in-
ferences about universal effects. Therefore, the gen-
eral quest for running experiments in the field to ob-
tain more «realistic» data is fundamentally misguid-
ed. In other words, if the exact question being asked
and the population being studied are exactly mirrored
in an experiment, then the information from the ex-
periment can be clear and informative. In fact, it
should be identical.

Camerer (2011) reviews the available studies on mar-
kets, student donations, fishing, grading, sports cards
and restaurant spending that provide the closest
matches of lab and field settings, protocols and sub-
jects and confirms these predictions. He concludes
that «no replicated evidence that experimental lab
data fail to generalize to central empirical features of
field data (when the lab features are deliberately
closely matched to the field features). … The default
assumption in the economics profession should be
that lab experiments are likely to generalize to close-
ly matched field settings. … This is the default assump-
tion, and is generally supported by direct compar-
isons, in other fields such as biology studies compar-
ing animal behavior in lab settings and in the wild».

With this idea in mind, it is possible to study in an ex-
perimental lab if the same professional football play-
ers play the same formal game according to the
Minimax predictions as well. Palacios-Huerta (2014) re-
cruited subjects come from clubs in the north of Spain,
a region with a high density of professional teams pro-
fessional soccer clubs. Eighty male professional soc-
cer players (40 kickers and 40 goalkeepers) were re-
cruited to form forty kicker-goalkeeper pairs. Subjects
who previously played for the same team were not
allowed to participate in the same pair. This measure
was implemented to parallel the reality that players
encounter in the field, as we would not want friends
or former teammates to play this game against one
another. The results he finds is that, as predicted, pro-
fessional football players also play Minimax in the lab.

Thus we learn than when the exact question being asked
is mirrored in a laboratory experiment, and the popula-
tion being studied is the same as in the field, the out-
comes from the experiment can be just as clear and
informative. In fact, that can be essentially identical.  
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This suggests that when either the exact question be-
ing asked is not mirrored or the population being stud-
ied differs, the outcomes from the experiment will
probably not parallel those observed in the field. 

As such it is easy not to obtain Minimax behavior in
the lab. Consider for example players who do not play
Minimax in the field and who say, when asked, that
they would not play Minimax in real life: players who
play in the Major League Soccer in the US. These are
the players studied in Levitt, List and Reiley (2010).
Table 2 below makes it clear that the US subjects are
drastically different from their European counterparts
who never indicate that they would never randomize,
whereas among US players more than 40% say they
would always kick to the same place.

Levitt, List and Reiley (2010) not only study US players
but they also form pairs of friends that know each oth-
er (teammates) for their experimental tests. But we
know that friends do not behave like enemies. The
game friends play is certainly embedded in a larger
game not captured by a zero-sum experimental de-
sign. Since friends cooperate, the very control of hav-
ing friends play against one another in a lab experi-
ment is an artificial margin that causes deviations
from equilibrium in a game that requires strict com-
petition. 

Laboratory studies of strictly competitive games (and
possibly all other games) should benefit from captur-
ing the fundamental competitive conditions that sub-
jects encounter in real life. Not capturing these con-
ditions, by construction, definitely induces behavior
different than that observed in real life. As a result, and
not surprisingly, Levitt, List and Reiley (2010) find that
their US players do not play Minimax in the locker room
(which is what they used as a «lab setting}). 

Thus the results testify that what does not happen in
the field, should not and does not happen in the lab.

NEUROECONOMIC EVIDENCE ON STRICTLY
COMPETITIVE STRATEGIC SITUATIONS

Over the last couple of decades, a new field called
Neuroeconomics is being developed with the objec-
tive «to create a theory of economic choice and ex-
change that is neurally detailed, mathematically ac-
curate, and behaviorally relevant» (Camerer, 2008).
This section reports measures of neural activity in the
two dimensions that characterize Minimax when sub-

jects are playing a zero-sum game almost identical
to the penalty kick game described earlier.

The study whose results were reported in Palacios-
Huerta, Olivero, Bestmann, Vila and Apesteguia (2014)
was performed in the Hospital Nacional de
Parapléjicos de Toledo during 2012 with a total of 20
healthy subjects. They formed 20 pairs: 20 volunteers
were studied inside an fMRI scanner and another
twenty subjects were studied outside the scanner. The
two subjects were not friends and had not met be-
fore. One player was playing in a computer in a qui-
et room located outside the scanner room.  The oth-
er player was lying down within the MRI room. For this
player, the PC monitor was substituted by MRI com-
patible goggles and the keyboard was substituted by
a button box designed for the hand. Player location
(inside or outside the MRI) was decided by flipping a
coin. They played this game:

It was found that the results of the Pearson tests of
equality of payoffs across A and B strategies, as well
as the results of the runs tests, conformed quite close
to Minimax. They are even an order of magnitude
closer to Minimax than the US players’ behavior in the
locker room observed in Levitt, List and Reiley (2010).

From a neuroeconomics perspective, the fMRI re-
vealed activity increases in various bilateral prefrontal
regions during the decision period. Interestingly, activ-
ity in left inferior prefrontal cortex related significantly
to the ability to equate payoffs. In other words, in this
prefrontal region correlated with the performance
measure for equating payoffs, with higher activity in
participants who more effectively succeeded in
equating payoffs. Conversely, a contralateral, right in-
ferior prefrontal region related to the ability to gener-
ate random sequences of choices. Activity in these
regions was correlated with the performance score
testing for the randomness of choices using the p-val-
ue of the runs test. 

Together these data suggest that two inferior prefrontal
nodes jointly contribute to the ability to optimally behav-
ior in strictly competitive strategic situations. It is not known
what the future will bring in terms of our capabilities to ob-
serve the workings of the brain and make inferences, but
this evidence shows for the first time the parts of the brain
where strict strategic competition takes place.

RECENT FINDINGS

Finally, we conclude with a brief description of some
recent findings of interest.

It is known that subjects can detect and exploit non-
equilibrium play in zero-sum games with unique equi-
librium in mixed strategies (Shachat and Swarthout,
2004). In a recent experimental game theoretical study,
Gil and Prowse (2016) find striking differences according
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US* England France Spain Germany
44%
(N = 20)

0%
(N = 24)

0%
(N = 300)

0%
(N = 42)

0%
(N = 57)

TABLE 2
PPROPORTION OF PROFESSIONAL PLAYERS THAT

INDICATE THAT THEY WOULD ALWAYS KICK TO THE
SAME SIDE IN A REAL LIFE PENALTY KICK

* Note: US data comes from the survey reported in the working pa-
per version of Levitt, List and Reiley (2010).

A B

A 60, 40 95, 5

B 90, 10 70, 30
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to the cognitive ability of subjects: more cognitively
able subjects behave closer to equilibrium, converge
more frequently to equilibrium play and earn more
even as behavior approaches the equilibrium predic-
tion. The average level of more cognitively able sub-
jects responds positively to the cognitive ability of their
opponents, while the average level of less cognitive-
ly able subjects does not respond. A consequence of
these findings is that to the extent that experiences
contributes to cognition (and also forms appropriate
competitive character skills), experience becomes a
powerful predictor of equilibrium behavior in the lab. 

Green, Rao and Rothschild (2016) observe experts per-
form a task in the lab that is logically isomorphic to a fa-
miliar task in which they are skilled. They find that perform-
ance plummets when contextual cues disappear, imply-
ing that the expertise we observe on the familiar task in
the field will travel far in the lab if the relevant contextual
cues are maintained. They conclude that «this observa-
tion entails a normative implication for experimental de-
sign. If economic actors approximate rationality though
context-dependent heuristics, then lab studies which ab-
stract away contextual cues bias their findings against
standard theories of rationality». Failing to maintain the
contextual cues explains the results in Levitt, List and Reiley
(2010), plus of course the fact that their players do not
play Minimax in the field. See Palacios-Huerta (2014,
chapters 2-3).

Erev, Roth and Slonim (2016) reports on an experimen-
tal design to evaluate how well the Minimax hypothesis
describes behavior across a population of games by
randomly sampling constant sum games with two play-
ers and two actions with a unique equilibrium in mixed
strategies. They find that students behavior is more con-
sistent with Minimax play the closer the mixed strategy
equilibrium is to equal probability play of each action.

Randomization, a critical ingredient of Minimax, is also
important in models of choice. Agranov and Ortoleva
(2016) report experimental results in which they show
that a majority of subjects do exhibit stochastic choic-
es when presented repeteadly with the same question.
This is in line with the interpretations of stochastic choice
as emerging from an explicit preference for randomiz-
ing in human behavior, as opposed to emerging from
random utility or mistakes.

NOTES

[1] Financial support from the Spanish Ministerio de Economía y
Competitividad and FEDER (project ECO2015-66027-P) and
from the Departamento de Educación, Política Lingüística y
Cultura del Gobierno Vasco (IT-869-13) is gratefully acknowl-
edged. This survey is partly based on previous published re-
search that appeared in my book Beautiful Game Theory,
Princeton University Press (2014), although it differs, sometimes
markedly, from the original publication. Address: London
School of Economics, Houghton Street, London WC2A 2AE,
UK. Email: i.palacioshuerta@gmail.com Web: www.palacios-
huer ta.com

[2] It could perhaps be modelled as a 3x3 game as well.
Chiappori et al. (2000), however, study the aggregate pre-

dictions of this zero-sum game, rather than the Minimax in-
dividual predictions, and conclude that the availability of C
as an action is not an issue. Their findings are also substanti-
ated in the dataset discussed in this survey. This means that
a penalty kick may be basically described as a two-action
game.

[3] See Bar-Hillel and Wagenaar (1991), Rapoport and Budescu
(1992), Rapoport and Boebel (1992), and Mookherjee and
Sopher (1994). Neuringer (2002), Rabin (2002) and Camerer
(1995) review the literature. See also Tversky and Kahneman
(1971).

[41] Aggregate level tests may also be implemented by check-
ing if the values in columns ‐ [r; s] and ‐ [r-1; s] tend to be
uniformly distributed in the interval [0, 1], which is what should
happen under the null hypothesis of randomization. See
Palacios-Huerta (2003, 2014).

[5] Compare Table IV in Brown and Rosenthal (1990) with Table
4 in Walker and Wooders (2001). There are many subjects that
pass the runs test but do exhibit serial dependence in that a
number of lagged endogenous variables (choices and out-
comes) help predict their subsequent choices.
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